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472,000 point-cloud
Implicit function f(x)

(32,000 term RBF)

Laser scanning & mesh repair 
Mesh repair 

Implicit surface modeling 

f(x)=0 iso-surface

f(x)<0

f(x)>0

+ve

0

-ve
• Iso-surface RBF

• Interpolate distance field (fit an RBF)

RBF surface modeling

• Form a signed-distance distribution

To find an interpolant s such that
s(xi) = 0,            i = 1,…,n       (known surface points)
s(xi) = di ≠ 0, i = n+1,…,N   (off-surface points)

The problem

Our method
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• Validate normal lengths

Generating off-surface data

Ensure a consistent distance-to-surface field

New point
xi+1

Conflicting data point

f(x i+1) = distance to xi

Surface data point xi

Surface normal

Off-surface point, xi+1

f(x i) = 0

Forming a signed-distance function 

• Off-surface points are projected along 
surface normals

Outward 
normal points

On-surface
points

Inward
normal points

Minimal energy interpolantsMinimal energy interpolants

We want to find the smoothest function which fits 
our distance-surface data.

minimize

i.e., minimize the 2nd derivative

Thin-plate spline in 3DThin-plate spline in 3D

Scalar weightLinear polynomial

How far is x from x i

The minimizing interpolant has the form :

s

where Minimizes 2nd derivative in 3D

Minimizes 3rd derivative in 3D

Choices for φ :

Radial Basis FunctionsRadial Basis Functions

This is a specific example of an RBF

Minimizes 2nd derivative in 2D

How do we find the weights λi ?How do we find the weights λi ?

Form & solve the linear system :

where

Unknowns to findKnown distance 
values at xi

Matrix dependent on the 
locations of the data points

N+4 x N+4
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E.g. dragon :   3,000 GB (N=872,000)         0.3 GB

N+4 x N+4

NN33/6 + O(N/6 + O(N22)) O(N log N)O(N log N)flopsflops

Fast solution

Direct methods Fast methods

N (N + 1)N (N + 1) O(N) O(N) storagestorage

E.g. dragon :     not possible           2:51:00 (PIII 550MHz)

O(N)O(N) O(1) +O(1) +
O(N log N) setupO(N log N) setup

flops perflops per
evaluationevaluation

Fast evaluation

Direct methods Fast methods

Centre reduction 

Greedy algorithm
• Fit an RBF to a subset of 

the xi

• Evaluate εi = fi - s(xi) at all
the nodes

• If max|εi| < εfit_acc  stop

• else add centres where εi
is large 

• re-fit RBF

1,086,000 points ⇒ 82,000 centres

Iso-surfacingIso-surfacing

• Surface-following 
minimizes RBF evaluations

• RBF centres are used as 
seeds

• The RBF gradient assists 
seeding and mesh 
optimisation 

ScapularScapular

• Evaluate mesh at the desired resolution

80 522

80 518

coefficients

centresRBF representation
1.6MB

193 604

96 766New mesh

triangles

points
3.5MB

ResultsResults

Original mesh 543 652

1 086 798

points

triangles
19.6MB

Buddha

# interpolation points: 1,086,194 
Fit time: 4:03:26     Eval time: 0:04:07    (500MHz PIII) 
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Interpolating noisy data

RBF distance field

Zero-valued iso-surface

350,000 point LIDAR scan

2nd derivative energy 
term (smoothness)s« is also an RBF with the coefficients given by

RBF smoothingRBF smoothing

Look for the function s« that minimizes

Closeness of fit

Deviation at each 
data pointRearranging :

RBF smoothingRBF smoothing

Look for the function s« that minimizes

ρ determines amount 
of smoothing

Spline smoothing with RBFsSpline smoothing with RBFs

Exact fit 
(ρ = 0)

Increasing ρ

Increasing smoothness 

Reconstructing ErosReconstructing Eros

Interpolating irregular, non-uniformly sampled 
range data from NASA’s NEAR spacecraft

http://near.jhuapl.edu/iod/20000728/index.html

Turbine bladeTurbine blade

• 594,000 centres

• 10-4 fitting accuracy
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ConclusionsConclusions

• A functional representation of a complex object is 
possible  i.e. f(x)

• Smooth RBF interpolation is ideal for mesh repair 

• The smoothest surface, most consistent with the 
input data, is produced

• Gradients are determined analytically, i.e. sf(x)

• Fast evaluation is essential

Email : j.carr@aranz.com
RBF model of Christchurch & Lyttelton 

aranz.com

Fast multipole methodsFast multipole methods

1. Hierachical partitioning of space

Consider the i th data point

1-D fast evaluation example

N data points (xi)

0

Fast multipole methods

Level

1

2

3

4

Consider evaluating s(x) inside panel A

Compute directly

A

grandparent panel

Fast multipole methods

1

4

Level

Far -field contributions

2. Approximate far panel contributions with Laurent series

Evaluation cost : O(log N) + setupO(log N) + setup

parent panel
2

3

0

Compute near panel contributions directly Compute contribution of far panel to Taylor series at A2Compute contribution of far panels to Taylor series at A3Compute contribution of far panels to Taylor series at A43. Compute & sum Taylor series approximationsP(x) approximates all far field contributions to panel A4

A4

Compute near field contribution exactly

A2

Fast multipole methods

0

Level Evaluation cost : O(1) + setupO(1) + setup

A3

4

3

2

1

P(x) Taylor series approximation
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1D interpolation example

Fitting & evaluation parameters 

• Evaluation accuracy << fit accuracy
Fitting accuracies

Evaluation points
FastRBF approximationFitted RBF, s(x)

Interpolation nodes f(x i)Evaluation accuracy

RBF fitting strategies RBF fitting strategies 

Full fit
10-6mm accuracy

Full fit 
1mm accuracy 

Greedy fit 
1mm accuracy

+1mm

-1mm

(6400 centres) (1800 centres)

Surfacing examples

AnimationsAnimations

RBF smoothingRBF smoothing RBF fittingRBF fitting
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ResultsResults

Original mesh 437 645

847 414

254 016

126 998

32 465

32 461

New mesh

points

coefficients

centres

triangles

points

triangles

RBF representation
0.6MB

4.5MB

15.4MB

Dragon

# interpolation points: 872,487  Fit time: 2:51:09   
Eval time: 0:04:40

RBF smoothing

RBF ExamplesRBF Examples

Clinical CAD-CAM example

Construction of a cranial prosthesis using an RBF model  Construction of a cranial prosthesis using an RBF model  

Explicit surface modeling

An RBF interpolates the surface of a skull to 
form a CAD model for the manufacture of a 
precision-fit titanium prosthesis.

Registration of 3D surfaces

mm

RBF difference – tissue swelling

BeforeBefore

AfterAfter
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Surfacing examplesSurfacing examples Mesh repair (hole-filling) 

WaterWater --tight surface fitted to an incomplete laser tight surface fitted to an incomplete laser 
scan. No userscan. No user --interaction was required.interaction was required.

Filleting Filleting 

Fitting a smooth surface between two objects Blending & morphing

Further applications 

Point cloud reconstruction Point cloud reconstruction 

472,000 point cloud472,000 point cloud

32,000 RBF terms32,000 RBF terms

Density examplesDensity examples
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3D density data visualisation 3D density data visualisation Mesh optimisation

Grid-constrained 
mesh

Optimised  mesh
FastSurfTM

Mesh vertices 
constrained to lie on 
parallel planes
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• Remove “duplicate” points

• Validate normal lengths

Close points

Generating off-surface data

Ensure a consistent distance-to-surface field

New point
xi+1

Conflicting data point

f(x i+1) = distance to xi

Surface data point xi

Surface normal

Off-surface point, xi+1

f(x i) = 0

Normal length validation

without validation

with validation

Finding the weights λiFinding the weights λi

The coefficients λ are uniquely determined by the 
interpolation conditions :

(1)

(2)

and the orthogonality conditions :

where

i.e., all linear polynomials must be zero at the xi
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where Minimizes 2nd derivative in 3DMinimizes 2nd derivative in 2DMinimizes 3rd derivative in 3DChoices for φ :

Radial Basis FunctionsRadial Basis Functions

This is a specific example of an RBF

Gaussian – “compact” support

Orthogonality conditions to ensure |s|2 finite

interpolation conditions

How do we find the weights λi ?How do we find the weights λi ?

Form & solve the linear system :

where

Unknowns to findKnown distance 
values at xi

Matrix dependent on the 
locations of the data points

N+4 x N+4

Animation - static imagesAnimation - static images

Iterative fitting of an RBF

iteration 1         iteration 10          iteration 30      iteration 1         iteration 10          iteration 30      iteration 50iteration 50

*Data courtesy of Stanford Computer Graphics Laboratory

Normal validationNormal validation

Normal projection

Normal lengths (left) and fitted surface (right)Normal lengths (left) and fitted surface (right)
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-1mm iso-contour

0mm iso-contour

+1mm iso-contour

RBF profile

Close points

• Validate normal lengths

• Remove “duplicate” points

Normal length validation

Ensure a consistent distance-to-surface field

• Remove “duplicate” points

Close points

• Validate normal lengths

Normal length validation

Ensure a consistent distance-to-surface field

Talk outline 

• Implicit surface representation 

• Radial Basis Function (RBF) interpolation

• Fast algorithms for computing RBFs

• Results & applications

Why use RBFs? 

• Data are not required to lie on a regular grid 

• Associated system guaranteed to be invertible 
under very mild conditions

• Poly harmonic splines minimize certain 
energy semi-norms and are therefore  
“smoothest” interpolators

• Results & applications

RBFs are ideally suited to scattered data 
interpolation

How to fit an implicit function 

• Construct a distance-surface distribution 

• Fit an RBF to the distance distribution

• Polygonize the object’s boundary by iso-
surfacing the RBF

RBFs are ideally suited to scattered data 
interpolation
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Surfacing examples

Surface constructed from nonSurface constructed from non--uniform point cloud datauniform point cloud data

Thin plate spline in 3DThin plate spline in 3D

Then

If

Scalar weightLinear polynomial

How far is x from x i

Fast algorithms

Direct methods Fast methods

N (N + 1)N (N + 1)
NN33/6 + O(N/6 + O(N22))

Fitting
O(N) O(N) 

O(N log N)O(N log N)
storagestorage
flopsflops

O(N)O(N)

Evaluation

O(1) +O(1) +
O(N log N) setupO(N log N) setup

flops perflops per
evaluationevaluation Detail of data from 350,000 point Cyra LIDAR scan

Spline smoothing with RBFsSpline smoothing with RBFs

What is an RBF?

An RBF is a weighted sum of translates of a radially 
symmetric basic function augmented by a polynomial.

Terrain modelling Terrain modelling 

RBF model of Christchurch & Lyttelton 


